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A MATRIX EQUATION ARISING IN

STATISTICAL FILTER THEORY

ABSTRACT

This report describes the behavior of the solutions of a
matrix Riccati differential equation arising in statistical filtering
and optimal control theory. The statistical problem leading to
the Riccati equation is outlined, Definiteness, ordering and
boundedness properties of the solutions of the general differential
equation with time varying coefficients are derived. When the
differential equation has constant coefficients, it is shown that
under a set of physically reasonable conditions there is a unique
steady state solution to which all other solutions converge at

an exponential rate.
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SECTION 1
INTRODUCTION

This report discusses properties of the solutions of a-
Riccati differential equation

E'=A(t) E +EAT(t) - EB(t)E +C(t) (1-1)

in which the solution E(t) and the coefficients A(t), B(t) and C(t)
are n by n matrices. This equation arises in determining the
best linear estimate of the solution of a linear differential equa-
tion driven by white noise. Matrix Riccati equations also arise
in the calculus of variations and in various problems in applied
mathematics. The assumptions made about the coefficients A(t),
B(t) and C(t) and the particular properties of the solutions of
(1-1) which are investigated in this report are those which are
relevant to the statistical problem. Reid1 and Levin2 have dis-
cussed matrix Riccati equations in a general context. Many of
the ideas which are treated in detail in this paper appear in

reference 3.

The statistical problem leading to the Riccati equation
is outlined in this section. The following sections examine the
Riccati equation from the standpoint of differential equation
theory and do not make use of probabilistic ideas. In Section
2, definiteness, ordering and boundedness properties are derived
for solutions of equation (1-1). Section 3 is concerned with the
autonomous case in which the coefficients of the Riccati equation
are constant matrices. The results of Section 3 depend on the
assumption that all of the unstable modes of the linear differen-
tial equation whose solution is being estimated are driven and

are measurable. A Riccati equation with constant coefficients



coming from such a statistical problem will be called regular.
It 1s shown that a regular matrix Riccati equation has a unique
positive semidefinite critical point or steady state solution and
that any solution with a positive semidefinite initial value con-

verges exponentially fast to the steady state solution.

Let the n-dimensional column vector x(t) be the solution

of the linear differential equation

= Alt)x+w (1-2)

where A(t) is a deterministic n by n matrix. The driving func-
tion w in equation (1-2) will be assumed to be white noise, that
is, an n-dimensional Schwartz distribution valued random pro-

3

cess whose formal first and second moments are

w (t) =0 (1-3)

and

ww (s)=C@H)st-s) (1-4)

In equations (1-3) and (1-4) the horizontal bar represents the
statistical mean or expected value, the asterisk represents

the conjugate transpose operation and the n by n matrix

C(t) is positive semidefinite for each value of t. The formal
first and second moments of w are Schwartz distributions and
determine the first and second moments of the random variables
obtained when the random functional w acts on deterministic

functions in its domain.
It is desired to estimate x (t) by filtering the observable

k-dimensional stochastic process (measurements) mf(t),
m(t) = H(t) x (t) + r(t) (1-5)
where H(t) is a k by n matrix and r(t) is k-dimensional white

noise. The two white noise processes w (t) and r(t) will be

assumed to be uncorrelated with each other and with the initial



value of x.

Kalman and Bucy6 have shown that, if only values of m(s)
for s=t are to be used in forming the estimate, the minimum
A
variance linear estimator of x (t) is the solution X (t) of the dif-

ferential equation
¥ =AW +EOH ® {m- HO % (1-6)

with the initial condition

A
x (0) = x(0)

The n by n weighting matrix E(t) in equation (1-6) is obtained by

solving equation (1-1) with the initial condition

E(0) = {x(o) - x(O)} {x(o) 77(()_)}

The coefficient B(t) in equation (1-1) is given by the formula

B(t) = H (t) U L¢t) Ht) (1-7)

where U(t) is the positive definite matrix associated with the
formal second moment of r,

—y ———

rt) r (s) = Ult) 6(t-s)

Besides acting as a weighting factor for the measurements in
equation (1-6), E(t) is the estimation error covariance matrix

A
for the estimator x(t),

A A *
E(t) = { x (t) - x(t)} {X(t) - X (t)}

As indicated above, the matrices E(0), B(t) and C(t) are

positive semidefinite in the statistical application. Since E(t) is

a covariance matrix, it should follbw that E(t) is positive semi-
definite for all values of t. This fact is established in Theorem
2-1. Since the right-hand side of equation (1-1) does not satisfy

a global Lipschitz condition, its solution may escape to infinity



at a finite time. For example, the Riccati equation

'
E=E2

has the solution

-1
E(t) = {I - tE(O)} E(0)

which escapes to infinity when

. 1
t= min Y
A >0
where the minimum is taken over the eigenvalues of E(0). This
possibility is ruled out in the statistical application by Theorem
2-2.

The following three part regularity condition is assumed

in proving the theorems in Section 3:

(2) B and C are positive semidefinite. The proofs of
Theorems 3-4 and 3-5 could be considerably shortened

if it were assumed that B and C are positive definite
rather than positive semidefinite. However, definiteness
is a fairly restrictive assumption since in applications
the observed stochastic process m(t) is often a scalar

so that the rank of B(t) is one. Furthermore, C has
rank one when equation (1-2) is the system represen-
tation of a single n-th order differential equation driven

by scalar white noise,

(b) No eigenvector of A whose eigenvalue has a non-
negative real part is a null vector of B, Since U is
positive definite, it follows from equation (1-7) that
every null vector of B is a null vector of H, In view

of equation (1-5), condition (b) may be interpreted as
requiring that every unstable mode of equation (1-2)
affect the measurements mf(t). It is clear that if

this condition is not satisfied, (1-1) cannot have a steady

state solution since the estimation error variance for an



unmeasurable unstable mode would be unbounded for
large t.

(c) No eigenvector of A" whose eigenvalue has a non-
negative real part is a r'1u11 vector of C. If e is an un-
stable eigenvector of A*, the second moment of the
scalar white noise u(t) driving the mode of equation

(1-2) corresponding to e is

u(t) u(s) .—_- e* Ce 6(t-s)

Thus, if e is a null vector of C, the unstable mode cor-
responding to e is undriven. Examples indicate that, if
condition (c) does not hold, equation (1-1) has positive
semidefinite critical points which are not stable in
addition to a stable critical point. It is not assumed

that A has a diagonal Jordan form.

Recent investigations7’ 8 have shown that the estimation
problem in which the measurement noise r(t) is the solution of
a linear differential equation driven by white noise leads to a
matrix Riccati equation in which E(0), B(t) and C(t) are again
positive semidefinite. This estimation problem contains the
Wiener theory of filtering and prediction of stochastic processes

with rational power spectra. 9

Kalman and Bucy5 have shown that the statistical problem
described above is the dual of a problem in linear control theory.

Therefore, the results of this report should apply to that problem.



SECTION 2

DEFINITENESS, ORDERING AND
BOUNDEDNESS OF SOLUTIONS

If R and S are hermitian matrices, the inequality R > S
will be used to indicate that the matrix (R-S) is positive definite,
Similarly, R 2 S will indicate that the matrix (R-S) is positive
semidefinite. Any matrix which appears in an inequality will

be assumed to be hermitian,

In the following analysis it will be assumed that A(t),
B(t) and C(t) are locally integrable functions of t and that B(t)
and C(t) are hermitian for each value of t. The existence and
uniqueness theorems for ordinary differential equations 10 imply
that, for a given initial condition E(0), equation (1-1) has a
unique absolutely continuous solution on some interval (o, a).
By the continuation theorem, this solution may be continued

to (0, a + €) for some € > 0 if
lim max
t—-a- 1i,j

< o

Eij (t)

Since B(t) and C(t) are hermitian and E(t) satisfies (1-1) on
(o, a),E"<(t) also satisfies (1-1) and it follows by uniqueness

that E(t) is hermitian provided that E(0) is hermitian,

Theorem 2-1

If E(t) satisfies equation (1-1) for t € [0, a), E(0) 2 0
and C(t) 2 0 for almost every t € [o, a), then E(t) Z 0 for every
te [o, a,

Proof: Assume that s € [o, a), let x be an arbitrary n
dimensional column vector and let y(t) be the solution of the

linear differential equation



v = {-% B(t) E(t) - A*(t)} y (2-1)

with
y(s) = x
Then by equation (1-1),
(v Ey)' =y Cy
and s
» E(s)x = y(0) E(0) y(0) + go (4 C(t) yit) at
(2-2)

The conclusion of the theorem follows immediately from
equation (2-2). Equation (2-2) also implies the following

corollary.

Corollary 1

If, in addition to the hypothesis of Theorem 2-1, E(0)> 0
or C(t) > 0 for almost every t € [0, a), then E(t) >0 for every
t € (0, a).

Corollary 2

If E(t) and E,(t) are solutions of (1-1) on [0, a) with
coefficients A(t), Bl(t), Cl(t) and A(t), Bz(t), C2(t) respectively,
with E2(0) z El(O) and Bl(t) z B2(t) and Cz(t) z C,(t) for almost
cvery te KO, a), then E2(t) z El(t) for every te [0, a).

Proof: The matrix

X(t) = Ez(t) - El(t)

satisfies the differential equation

;o _ _ b3 _ _
X' = (A Ele) X + X(A Ele) X B X+ El(B1 Bz) E1

2

+C2 -C (2-3)

1



The corollary follows by applying Theorem 2-1 to equation (2-3).

Theorem 2-2

If E(0) 2 0 and B(t), C(t) 2 0 for almost everyt e
[0, ®©), then the solution of (1 - 1) does not escape to infinity
at a finite time and the elements of E(t) satisfy inequality
(2 -17) below,

Proof: Suppose that the solution E(t) exists on the interval
[O, a). Since the hypothesis of Theorem 2-1 is satisfied, E(t) 2 0.
This implies that

E.| 2=sE_E. . =l(E. +8 )2
ij ii 73 4 il il
and therefore
1
< =
ij| =3 tr E
Let
n n
a(t) =z l Aij(t)|
i=1  j=1
Then
n n
trAE‘ =| tr EA=':| - A.E.|s 2atrE
ij 731 2
i=1 =1

(2-4)

Since EBE 2 0, its diagonal elements are non-negative, and
tr EBE2 0 (2-5)

Taking the trace of both sides of equation (1-1) and using (2-4)
and (2-5) yields

(tr E)'é%-atrE+tr‘C (2-6)



and applying the method of proof of Gronwall's lemma yields

t

2 Eij(t) Str E(t) Sexp %— a(s) ds {tr E(0)
0
t s
+ tr C(s) exp -é— a(u) du ds } (2-7)
0 0

In view of the continuation theorem, inequality (2-7) implies
that the solution E(t) exists on the entire right half line.

This theorem may also be proved using the method of

proof of Lemma 1 of Theorem 3-5 below.
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SECTION 3
CRITICAL POINTS IN THE AUTONOMOUS CASE

In this section it will be assumed that the coefficients
A, B and C in equation (1-1) are constant matrices and that
B and C are hermitian. The matrix S is a critical point of
equation (1-1) if it is a zero of the right-hand side, that is,
if
AS +SA*-SBS+C=0 (3-1)

It will always be assumed that S is a hermitian matrix, If S

is a critical point of equation (1-1), then the matrix
X(t) = E(t) -S
éatisfies the differential equation
X' =FX + XF'- XBX (3-2)
with
F = A-SB (3-3)
Equation (3-2) may be formally transformed to a linear differen-
tial equation by letting
Y(t) = (1)
Then, if it exists, Y satisfies the differential equation
Y'= -F*Y - YF + B

From equation (3-2) it follows that the linearization of (1-1)

about the critical point S is

sk

X' =FX+XF (3-4)

The solution of equation (3-4) is



X(t) = ®(t)X(0)& (1)
where &(t) is the solution of the differential equation
&' =F &
with
d(0)=1

By a well known theorem on critical points of autonomous

Systems(?”ef' 10, p.

314) 5 g asymptotically stable if F is

a stable matrix, that is, has only eigenvalues with negative
real parts. If one of the eigenvalues of F has a positive real
part, the critical point S cannot be asymptotically stable, but
if some of the eigenvalues of F have zero real parts while the
rest have negative real parts a more detailed analysis is re-
quired to determine whether S is asymptotically stable., If
the matrix F is stable the critical point S will be called

persistent.

The following theorem from matrix theory is needed as

a tool in the following analysis.

Theorem 3-1

If the matrix R is stable, and V 2 0, then the equation
RU + UR™ = -V
has a unique solution and U 20. If V> 0, then U >0,

This theorem is proved in reference 11 on pages 81 to

84 and in reference 12 on pages 220 to 226.

Theorem 3-2

If B 20, then equation (1-1) has at most one persistent
critical point.
Proof: Let S1 and 52 be two persistent critical points of

equation (1-1) and let X =8, - S;. Then by (3-2), X satisfies

11




12

F X + XF1 = XBX

with

Since XBX 20 and F1 is stable, Theorem 3-1 implies that X =0.
Interchanging the roles of S1 and Sz, it follows that X Z0. Hence

X =0.

Definition; The set of coefficient matrices (A, B, C) in

equation (1-1) will be called regular if

(a) B, C =20

(b) No eigenvector of A whose characteristic value has
a non-negative real part is a null vector of B.

(c) No eigenvector of A™ whose characteristic value has

a non-negative real part is a null vector of C.

Theorem 3-3

If S 20 is a critical point of (1-1) and (A, B, C) is regular,
then S is persistent.

Proof: It will be shown that the eigenvalues of F* = A" - BS

have negative real parts. Equation (3-1) may be rewritten as
FS + SF" + SBS + C = 0 (3-5)

Let e be an eigenvector of ¥ corresponding to the eigenvalue
A + ip and multiply equation (3-5) on the left by e™ and on the
right by e.

Then
21 e* Se + e*SBSe + e* Ce = 0 (3-6)

Suppose e” Se = 0. SinceS 2 0, this implies that Se = 0,
F¥e = A¥e and hence e is an eigenvector of A~ with the same
eigenvalue. Since each term in equation (3-6) is nonnegative,

e*Ce = 0 and e is a null vector of C. Therefore, X is negative



by regularity property (c).

Suppose e*SBSe = e*Ce = 0. Let B, be a matrix such

1
that B = B{': B,. B, can be found since B Z0. Then e* SBSe =
(B, Se)™(B; Se) = 0 or B, Se = 0 and finally B/ B, Se = BSe = 0.

Again F¥e = A%e, e is a null vector of C and hence X is negative

by regularity property (c).
Finally, if e™Se >0 and ¢* SBSe or e*Ce > 0,

_e* SBSe + e* Ce

A= e* Se

<0
and the proof is complete.

Remark: Regularity property (b) need not be included in the
hypothesis of Theorem 3-3 since it is never used in the proof.
However, its inclusion results in no loss of generality since

if regularity property (b) fails to hold, F cannot be stable. For,
if e is an eigenvector of A corresponding to an eigenvalue with

a nonnegative real part and e is also a null vector of B, then

Fe = Ae and F is not stable.

Physical reasoning leads to the conjecture that F is always
more stable than A, that is that all of the eigenvalues of F have
smaller real parts than the eigenvalue of A having the largest
real part. This would mean that the transients in the estimation
statistics die out at least as quickly as the transients in the
equation (1-2). The following example shows that this is not

always true.

A = B = C= S=1
-2 -6 0 6 0 18

The eigenvalues of A are -2 and -5.

F =

13
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The eigenvalues of F' are

%(-ISd: N113) = -1.18, -11.82

Theorem 3-4

If (A, B, C) is regular, then (1-1) has a critical point
S 0.

Proof: The critical point will be obtained by solving equation
(3-1) by Newton's method. For a hermitian matrix M, let

f(M) = -AM - MA* + MBM - C (3-7)

To start the Newton's method iteration, it is necessary to find a
matrix S, Z 0 such that f(SO) Z0.

Since it is not clear that such a matrix exists if B is singular,

the Theorem will first be proved assuming B > 0. In this case
f(al) 2 0 for a sufficiently large positive number a.

If S is considered as an n2 dimensional vector and the

Newton's method iteration formula is applied to equation (3-1),
the recursion formula

(A—SkB)Sk+1+Sk+1(A-SkB)' +SkBSk+C=O

(3-8)
is obtained.

It will be proved by induction that there is a sequence
of matrices

S

v
wn
v
(2}
nv
o

0 1 9 - (3-9)

satisfying equation (3-8).

; z
First, S0 Z 0 and f(SO) z 0.

Suppose that there is a
sequence

satisfying equation (3-8) for k



f(SN) z 0. Sy satisfies the matrix quadratic

s A
AS -i—SNA - S BSN+C—0

N N

with

A
C=C+f (SN)

A A
Since Cz C, (A, B, C) is regular and by Theorem 3-3,

A
F=A-SNB

is stable. By Theorem 3-1, equation (3-8) can be solved for

Sy + 12 0. By (3-7) and (3-8) it follows that

(S ) = (S -SN)B(S —SN)éo

N+ 1 N+1 N+1

Furthermore, let DN= SN - SN 1 Then DN satisfies the

equation

(A - SNB) DN + DN (A - SN B) = -f(SN)

By Theorem 3-1, D _= 0, or

N

S =S

N+1 N

Thus, the existence of the sequence

> > > >
SO=Sl="'=SN+l=O
with f(SN . 1) 20 has been proven. The existence of (3-9)
follows by induction. Since (Skl k=0,1, 2,. . .)is a

decreasing sequence bounded below, it has a 1imit13 Sz 0.
Taking the limit of equation (3-8) as k—~o yields
AS + SA*-SBS+ C =0

and the theorem is proved for the case when B > 0.

The following lemmas are needed to handle the case when

B is singular.

15
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Lemmal

If S2 0 is a critical point of equation (1-1), (A, B, C)is
regular and no eigenvalue of A has a negative real part, then
S > 0.

Proof of lemma: Let N be the null space of S and let n
be a null vector of S. Multiplying equation (3-1) on the left by
n™ and on the right by n yields n™Cn = 0 and since C2 0,

Cn=0 (3-10)

Now multiply equation (3-1) on the right by n. In view of (3-10)
this yields SA™n = 0 and hence A¥*NCN. Thus, if N is not empty,
A* has an eigenvector e such that e € N, By the hypothesis of
the lemma, the eigenvalue corresponding to e must have a non-
negative real part. This cannot be true since it violates regu-

larity property (c) and therefore N must be empty.

Lemma 2

If (A, B, I)is regular, then there exists U Z 0 such that
(A - UB) is stable.

Proof of lemma: If A is stable the lemma follows by choosing

U=20. If Ais not stable, choose T such that

A] 0

0 A4

where the submatrix A1 has no stable eigenvalues and the sub-

matrix A4 is stable, and let

Since (A, B, I) is regular, it follows that no eigenvector of A1 is

a null vector of B, and therefore that (—AT ., I, B;) is regular.



Let S 0 be a solution of the matrix quadratic

=
1=

0 2 _
-Alsl-SlAl-Sl+B1—-0

Sy exists since the coefficient of the second degree term in S1
is definite. By the preceding lemma S1 is nonsingular. There-
fore
-1 S P IS | -1 L
Als1 +S1 Al-S1 BIS1 +I=0
and by Theorem 3-3, A, - Sil B, is stable.
Finally, let
s;! 0
U= T T (3-11)
0 0
Then
-1 -1
A -5 By S By
THa-UBT = (3-11)
0 A2

The matrix on the right-hand side of (3-11) is stable since its
diagonal blocks are stable and therefore (A - UB) is stable.

The existence of S0 when B is singular may now be
proved as follows. By the lemma, there is a matrix U 2 0 such
that G = A - UB is stable. Choose M 2 0 so that

MZ AU + UA¥ -UBU + C
By Theorem 3-1, the equation
GH+ HG™ = -M
has a solution H =z 0. Then, letting SO = U + H, it follows that
S0 Z 0 and
£(Sy) = M - AU - UA*™ + UBU + HBH - Cz HBH 2 0

17
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Remark: If A is stable, a suitable value of S0 may be

obtained by solving the equation

ASO+ SOA"= -C

When A is stable, S may also be found by the method of spectrum
factorization due to Wiener. (Ref. 9, 14, 15) Although they are
efficient from a computational standpoint, the spectrum factor-
ization formulas look quite formidable when written in terms of
the present notation, and the formal relationship between spec-
trum factorization and the matrix quadratic (3-1) is not clear,
This might be an interesting area for further study. S may be
written as an elementary function of A, B and C if A is hermitian

and B or C is a multiple of the identity matrix. If B =bl, then

s =p! { A+ (a%+ bC)l/z}
and if C = cl, then 1

S=C{(A2 remy)l/2 A}

In these formulas, the exponent 1/2 denotes the positive semi-

definite square root operation.

Theorem 3-5

If (A, B, C) is regular, S is the positive semidefinite critical
point of (1-1) and E(t) is a solution of (1-1) with E(0)2= 0, then

E(t)—=S exponentially fast as t—>oo.

Proof: Let Eo(t) be the solution of (1-1) with EO(O) =0.
Also let H> 0 satisfy

H>S
and
H=z E(0)

and let E, (t) be the solution of (1-1) with E,(0) = H. Then by
Corollary2 of Theorem 2-1 it follows that

E )= Et) = E, (t) (3-12)



It will be proved below that Eo(t) and El(t) approach S exponentially
fast as t~o. Thus E(t) is squeezed between Eo(t) and El(t) and
approaches S exponentially fast. This may be shown formally as
follows. By (3-12)

and taking operator norms

I E - EOH §| E, - EOH
§|E1-S +| S—EOH
and finally
[ T
or
|E—S“§ ‘El—S + 2 “E0~S“ (3-13)
If \El - S “=O(e'at) and “EO -8 “=O(e'at),
t

then in view of (3-13), “ E-S “ =0(e”21),
Lemma 1

If E(t) is a solution of (1-1) with E(0) = H> S then
E(t)->S exponentially fast as t—>oo.

Proof of lemma: Let
X(t) = E(t) - S
X(t) satisfies the differential equation
X’'= FX +XF* - XBX (3-2)
with the initial condition |
X(0)=H-S>0
By Theorem 2-1,
X(t)z 0 (3-14)

Let Y(t) be the solution of the differential equation

19
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Y'=FY+ YF*

with initial condition

Y(0)=H-S
Then, assuming X is known, Y - X satisfies the differential equation

(Y-X)'= F(Y - X) + (Y - X\)F' + XBX

with the initial condition

Y(0) - X(0) =0
By Theorem 2-1 and (3-14) it follows that

Y(t)Z X(t)2 0
Finally, it may be verified by substitution that

%
Y(t) = eFt (H - 5) eF ¢

2
N e

and, since (by Theorem 3-3) F is stable,

Thus
Ft
e

< <

Y(t)

<)

X(t) = E(t) - S=0

exponentially fast as t—cc.

L.emma 2

If F(t) is a solution of (1-1) and E(0) = 0, then E(t)-S

exponentially fast as t—+o .

Proof of lemma: The case when S > 0 will be treated
first. The idea of the proof is derived from the fact that if
equation (1-1) has a negative definite critical point S('), then a
hermitian initial condition E(0) > S{-) results in a solution of
(1-1) which converges to S. Although equation (1-1) does not
have a negative definite critical point in general, the formal
matrix quadratic satisfied by S(') always has a negative semi-
definite solution (which may be a singular matrix) if (A, B, C)

is regular. This is the motivation for finding the solution of



equation (3-15).
Consider the matrix quadratic equation

AU+ UA-UCU+B=0 (3-15)

(A*, C, B) is regular since (A, B, C) is regular, and by Theorem

3-4, equation (3-15) has a solution UZ 0. Let

1

w=sl-(s+sug!

Since S and S + SUS are nonsingular, it follows that (I + US) and
(I + SU) are nonsingular and that :

w=ul+sut=a+us)ylu (3-16)

Fmploying (3-1), (3-15) and (3-16) it may be verified that W

satisfies the equation
F*W + WF = -B (3-17)
Since F* is stable,
Wz 0

by Theorem 3-1. From the definition of W it follows that
-1

S -W>0 (3-18)
Finally, let
X(t) = F(t) - S (3-19)
X(t) satisfies equation (3-2) with the initial condition X(0) = -S.

It may be verified by substitution, employing equation (3-17),
that

X(t) = -t Z L (p)eF b (3-20)
with )
Z(t) = 5L - W of b welt
Since W2 0,
FtweFtz g (3-21)

By (3-18) and (3-21), Z(t) is nonsingular for all values of t and
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z i)

= “ {s'l - w}'l “ (3-22)

Thus by (3-19), (3-20) and (3-22)
2 -1
| {s2-w} )

E(t) - sl = H e Tt |
and E(t)—+S exponentially fast as t—+w since F is a stable matrix.

The case when S is singular will be treated by transforming

equation (1-1) to a more convenient form. Assume that the rank
of S is k with k < n. Then there is a nonsingular n by n matrix
T such that

T'ST =8 = (3-23)
0 0

The partitioned matrix on the extreme right hand side of equation
(3-23) consists of a k by k identity matrix in the upper left hand
block and three other blocks containing zeros. Employing the

same partitioning, let

_ -
A-TaT" o (3-24)
| A3 A4 ]
_ )
B, B,
~ -1 %k -]
B=T!BT"! (3-25)
| B3 By |
< Cy
~ *
C=TCT = (3-26)
| C3 Cy
and define
F=7'Fp 1 (3-27)



and

E(t) = T EM®T (3-28)

Under this transformation, all of the preceeding equations retain
the same form with tilde matrices replacing non-tilde matrices.

In the statistical filtering application this transformation repre-
sents a change of basis in the domain of the stochastic process

x (t) being estimated. Thus, the transformation does not change
the qualitative aspects of the problem. In particular, F is stable
if and only if F is stable since they have the same Jordan normal
form, and (A, B, C) is regular if and only if (A, ]5, 6) is regular.

In terms of partitioned matrices, the tilde version of

equation (3-~1) takes the form

b
A1 + Al'Bl -|-C1 A3+C2
0 = (3-29)
A3 + C3 C4

Thus, C4 = 0 and C2 = C3 = 0 since C 2 0. This in turn implies

that A, = 0. Hence, A and C may be written as

3 p-
N A1 A2
A = (3-30)
— 3 0 A4
and
C1 0
C =
[ o 0

It may be verified by substitution that, if E(t) is the solu-
tion of the tilde version of (1-1) with E(0) = 0, then

E (1) 0
E(t) = (3-31)

23



where El(t) satisfies the differential equation

4 %
E1 —AlE + ElAl -E.B.E, + C1 (3-32)

1 17171

with the initial condition
El(o) =0

From the upper left hand block in equation (3-29), it follows
that S, = Iis a critical point of equation (3-32). In order to
apply the proof above for nonsingular S to equation (3-32) it is
necessary to show that (A,, B;, C,) is regular.

Regularity property (a) holds since principal submatrices
of positive semidefinite matrices are positive semidefinite. If
u is an eigenvector of A1 whose eigenvalue has a non-negative real

part, then

0
is an eigenvector of A with the same eigenvalue. By regularity
property (b) for (A, B, E), it follows that

e*Be=u*B1u#= 0

Therefore (Al’ B Cl) has regularity property (b).

1)
Let u be an eigenvector of Al corresponding to an eigen-
value ¢ with a non-negative real part. Since A4 is stable, the

matrix cl - Ai is nonsingular. Let

#.0-1 w
v = (cI - A4) A2 u

and let



Then

n

~

A e=ce
and by regularity property (c) for (Z, E’:, 6) it follows that
e*Ce-= u*Cl u# 0
Therefore (Al’ B,, Cl) has regularity property (c) and the proof
of the regularity of (Al’ Bl’ Cl) is complete.
By the proof above for a nonsingular S, it follows that
El(t)—>S1 =1 (3-33)
exponentially fast as t—~ o .
Thus
Et) - S
exponentially fast in view of (3-23), (3-31) and (3-33), and trans-

forming back to non-tilde matrices the conclusion of the lemma

follows.

The net result of Section 3 is the following:

Theorem

If (A, B, C) is regular, equation (1-1) has a unique
positive semidefinite critical point S. This critical point is
persistent and if E(t) is a solution of equation (1-1) with E(0) Z 0,

then E(t) ~ S exponentially fast as t = 0.
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